§6. The Kepler Problem
Consider an object moving along a trajectory $\vec{c}(t)$, where t is time:

We want to compute the area swept out after a time t.
To this end, it is useful to switch to polar coordinates where we have:

$$
\vec{c}(t)=r(t)(\cos \theta(t), \sin (\theta))
$$

The curve $\vec{c}(t), 0 \leqslant t \leqslant T$ is then called a "parametric curve".

We introduce the notation:

$$
\begin{equation*}
\vec{c}(t)=r(t) \cdot \vec{e}(\theta(t)) \tag{1}
\end{equation*}
$$

where

$$
\vec{e}(t)=(\cos t, \sin t)
$$

is just the parametrized curve that runs along the unit circle.
Note that

$$
\vec{e}^{\prime}(t)=(-\sin t, \cos t)
$$

is also a unit vector but perpendicular. to $\vec{e}(f)$.

$$
\begin{equation*}
\Rightarrow \quad \operatorname{det}\left(\vec{e}(t), \vec{e}^{\prime}(t)\right)=1 \tag{2}
\end{equation*}
$$

explicitly:

$$
\operatorname{det}\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)=\cos ^{2} t-\left(-\sin ^{2} t\right)=1
$$

In order to compute the area $A(f)$, it's useful to first obtain a formula for $A^{\prime}(t) \longrightarrow$ consider triangle:

The area of such a triangle can be expressed as:

$$
\operatorname{area}(\Delta(t))=\frac{1}{2} \operatorname{det}(\vec{c}(t), \vec{c}(t+h)-\vec{c}(t))
$$

Then we compute

$$
\begin{aligned}
A^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{A(t+h)-A(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\operatorname{area}(\Delta(h))}{h} \\
& =\frac{1}{2} \operatorname{det}\left(\vec{c}(t), \lim _{h \rightarrow 0} \frac{\vec{c}(t+h)-\vec{c}(t)}{h}\right) \\
& =\frac{1}{2} \operatorname{det}\left(\vec{c}(t), \vec{c}^{\prime}(t)\right)
\end{aligned}
$$

Using

$$
\begin{equation*}
\vec{c}^{\prime}(t)=r^{\prime}(t) \cdot \vec{e}(\theta(t))+r(t) \theta^{\prime}(t) \vec{e}^{\prime}(\theta(t)) \tag{3}
\end{equation*}
$$

and linearity of the determinant in its column vectors, we obtain:

$$
\begin{align*}
\operatorname{det}\left(\vec{c}(t), \vec{c}^{\prime}(t)\right) & =r(t) r^{\prime}(t) \underbrace{\operatorname{det}(\vec{e}(\theta(t)), \vec{e}(\theta(t)))}_{=0} \\
& +r(t)^{2} \theta^{\prime}(t) \underbrace{\operatorname{det}\left(\vec{e}(\theta(t)), \vec{e}^{\prime}(\theta(t))\right.}_{=1}) \tag{4}\\
& =r^{2} \theta^{\prime}
\end{align*}
$$

\rightarrow total area can be obtained by integration:

$$
A(t)=\frac{1}{2} \int_{0}^{t} r(t)^{2} \theta^{\prime}(t) d t
$$

or, performing the substitution $d \phi=\theta^{\prime}(f) d t$:

$$
A(\theta)=\frac{1}{2} \int_{0}^{\theta(t)} \rho(\phi)^{2} d \phi
$$

where $\rho=r o \Theta^{-1}$. Check:

$$
\begin{align*}
A^{\prime}(t) & =\frac{1}{2} \rho(\theta(t))^{2} \cdot \theta^{\prime}(t) \\
& =\frac{1}{2} r(t)^{2} \theta^{\prime}(t) \tag{5}
\end{align*}
$$

Let us now use these results to understand Kepler's 3 laws of planetary motion (1609):

K1: The planets move in ellipses, with the sun at ore focus.
K2: Equal areas are swept out by the radius vector in equal times

K3: If a is the major axis of a planet's elliptical orbit and T its period, then a^{3} / T^{2} is the same for all planets

In our notation, Kepler's second law is equivalent to saying that $A^{\prime}(t)$ is constant.
so $K 2 \Longleftrightarrow A^{\prime \prime}=0$
But

$$
\begin{aligned}
A^{\prime \prime} & =\frac{1}{2}\left[\operatorname{det}\left(\vec{c}, \vec{c}^{\prime}\right)\right]^{\prime}=\frac{1}{2} \underbrace{\operatorname{det}\left(c^{\prime}, c^{\prime}\right)}_{=0}+\frac{1}{2} \operatorname{det}\left(c, c^{\prime \prime}\right) \\
& =\frac{1}{2} \operatorname{det}\left(\vec{c}, \vec{c}^{\prime \prime}\right)
\end{aligned}
$$

(Homework)
So

$$
K 2 \Leftrightarrow \operatorname{det}\left(\vec{c}, \vec{c}^{\prime \prime}\right)=0
$$

From this we can deduce the following:
Proposition 1 (Newton):
Kepler's second law is true if and only if there exists a force \vec{F} that is central, and in this case each planetary path $\vec{c}(t)=r(t) \cdot \vec{e}(\theta(t))$ satisfies the equation

$$
r^{2} \theta^{\prime}=\operatorname{det}\left(\vec{c}, \vec{c}^{\prime}\right)=\text { const }(k 2)
$$

Proof:
Know that $\vec{F}=m \cdot \vec{c}^{\prime \prime}(t)$

Saying that the farce is central just means that it always points along \vec{C} Since $\vec{c}^{\prime \prime}(f)$ is in the direction of the force, that is equivalent to saying that $\vec{c}^{\prime \prime}(t)$ always points along $\vec{C}(t)$

$$
\Rightarrow \operatorname{det}\left(\vec{c}(t), \vec{c}^{\prime \prime}(t)\right)=0
$$

Thus $\operatorname{det}\left(\vec{c}(t), \vec{c}^{\prime}(t)\right)=$ constant
We are now in the position to derive Kepler's first law from Newton's concept of a "gravitational force":
Proposition 2 (Newton):
If the gravitational force of the sun is a central force that satisfies an "inverse square law", then the path of any planet in it will be an ellipsis having the sun at one focus.
Proof:
By $K 2$ we have $r^{2} \theta^{\prime}=\operatorname{det}\left(\vec{c}, \vec{c}^{\prime}\right)=\widetilde{M}$
for some constant \tilde{M}. The hypothesis of an inverse square law can be written

$$
\vec{c}^{\prime \prime}(t)=-\frac{H}{r(t)^{2}} \vec{e}(\theta(t))
$$

for some constant H. Using $K 2$, this can be written as

$$
\frac{\vec{c}^{\prime \prime}(t)}{\theta^{\prime}(t)}=-\frac{H}{\sqrt{9}} \vec{e}(\theta(t))
$$

Notice that the left-hand side of this equation is
$\left[\vec{C}^{\prime}(t) \circ \theta^{-1}\right]^{\prime}(\theta(t))$ (use inverse function derivative and chain rule)
So if we let

$$
D=\vec{c}^{\prime} \circ \theta^{-1},
$$

then the equation can be written as

$$
D^{\prime}(\theta)=-\frac{H}{M} \vec{e}(\theta)=-\frac{H}{M}(\cos \theta, \sin \theta),
$$

where we now view θ as an independent variable. Integrating gives

$$
D(\theta)=\left(\frac{H \cdot \sin \theta}{-M}+A, \frac{H \cdot \cos \theta}{M}+B\right)
$$

for two constants A and B. Reintroducing the dependence on t, we have

$$
\vec{c}^{\prime}(t)=\left(\frac{H \cdot \sin \theta(t)}{-M}+A, \frac{H \cdot \cos \theta(t)}{\bar{M}}+B\right)
$$

Substituting this together with $\vec{c}=r(\cos \theta, \sin \theta)$, into the equation

$$
\operatorname{det}\left(\vec{c}, \vec{c}^{\prime}\right)=\widetilde{M},
$$

we get

$$
r\left[\frac{H}{M} \cos ^{2} \theta+B \cos \theta+\frac{H}{M} \sin ^{2} \theta-A \sin \theta\right]=\widetilde{M},
$$

which simplifies to

$$
r\left[\frac{H}{M^{2}}+\frac{B}{M} \cos \theta-\frac{A}{M} \sin \theta\right]=1
$$

This can be rewritten as (Homework):

$$
r(t)\left[\frac{H}{M^{2}}+C \cos (\theta(t)+D)\right]=1
$$

for some constants C and D. By choosing our polar axis appropriately (which ray corresponds to $\theta=0$), we can let $D=0$

$$
\Rightarrow r\left[1+\sum \cos \theta\right]=\frac{\tilde{M}^{2}}{H}=: \Lambda
$$

But this is the formula for an ellipsis which can be seen as follows:

with $0 \leq \varepsilon<1$. We have

$$
\begin{gather*}
r^{2}=x^{2}+y^{2} \tag{1}\\
\Rightarrow(2 a-r)^{2}=(x-(-2 \varepsilon a))^{2}+y^{2} \tag{2}\\
\text { or } 4 a^{2}-4 a r+r^{2}=x^{2}+4 \Sigma a x+4 \Sigma^{2} a^{2}+y^{2}
\end{gather*}
$$

Subtracting (1) by (2) and dividing by $4 a$, we get

$$
\begin{aligned}
a-r & =\Sigma x+\Sigma^{2} a \\
\Leftrightarrow r & =a-\Sigma x-\Sigma^{2} a=\left(1-\Sigma^{2}\right) a-\Sigma x \\
\Leftrightarrow \quad r & =\Lambda-\Sigma x, \text { for } \Lambda=\left(1-\Sigma^{2}\right) a
\end{aligned}
$$

Using $x=r \cos \theta$, we have finally:

$$
r(1+\Sigma \cos \theta)=\Lambda .
$$

Let us see what this means for our original equation

$$
\begin{align*}
\vec{c}^{\prime \prime}(t) & =-\frac{H}{r(t)^{2}} \vec{e}(\theta(t)) \\
& =-\frac{\widetilde{M}^{2}}{\Lambda} \cdot \frac{1}{v^{2}} \vec{e}(\theta(t)) \tag{x}
\end{align*}
$$

We also see that the major axis of our ellipsis is given by:

$$
\begin{equation*}
a=\frac{\Lambda}{1-\Sigma^{2}} \tag{3}
\end{equation*}
$$

while the minor axis is given by:

$$
\begin{align*}
& b=\frac{\Lambda}{\sqrt{1-\varepsilon^{2}}} \tag{4}\\
& \Rightarrow \quad \frac{b^{2}}{\Lambda}=a \tag{5}
\end{align*}
$$

Recall that

$$
\begin{aligned}
A^{\prime}(t) & =\frac{1}{2} r^{2} \theta^{\prime}=\frac{1}{2} \tilde{M} \\
\rightarrow \quad A(t) & =\frac{1}{2} \tilde{M} t
\end{aligned}
$$

\longrightarrow area of the ellipse $=A(T)=\frac{1}{2} \widetilde{M} T_{T}$

$$
\Leftrightarrow \tilde{M}=\frac{2(\text { area of ellipse) }}{T}=\frac{2 \pi a b}{T} \quad \text { of pericanet }
$$

Hence the constant $\tilde{M}^{2} / \widehat{\lambda}$ in $(*)$ is

$$
\begin{aligned}
\frac{\bar{M}^{2}}{\Lambda} & =\frac{4 \pi^{2} a^{2} b^{2}}{T^{2} \Lambda} \\
& (5) \\
& =\frac{4 \pi^{2} a^{3}}{T^{2}}
\end{aligned}
$$

From this we obtain
Proposition 3 (Newton):
Kepler's third law is true if and only if the acceleration $\vec{c}^{\prime \prime}(t)$ of any planet, moving on an ellipse, satisfies

$$
\tau^{\prime \prime}(t)=-\widetilde{G} \cdot \frac{1}{r^{2}} \vec{e}(\theta(t))
$$

for a constant \widetilde{G} independent of the planet.
But what is the constant \widetilde{G} ?
Let us look at the force exercised on the planet due to the sun!

$$
\vec{F}=m \vec{c}^{\prime \prime}(t)=-\frac{m \widetilde{G}}{r^{2}} \vec{e}(\theta(t))
$$

where m is the mass of the planet

But: Due to Newton's 3rd law, the planet exercises a force of the same magnitude on the sun (imagine the planet being much larger than the $\operatorname{sun} \rightarrow$ sun would orbit around it!)
$\rightarrow \widetilde{G}$ must be proportional to M, ie. $\widetilde{G}=G \cdot M$, where M is the mass of the sun
The constant G is called Newton's constant is given by

$$
G=6 \cdot 67 \cdot 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}
$$

and the "universal gravitational law" takes the form:

$$
\vec{F}_{\text {grave }}=-\frac{G m M}{r^{2}} \vec{e}(\theta(t))
$$

